Unit 1:Complex Numbers 1.0 Introduction

- You already know how to find the square root of a positive real number in sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}, but the problem occurs when finding square root of negative numbers.

Consider the following problem:

Solve in set of real number the following equations:

1. $x^{2}+6 x+8=0$
2. $x^{2}+4=0$

For equation 1), we have solution in \mathbb{R} but equation 2) does not have solution in \mathbb{R}. Therefore, the set \mathbb{R} is not sufficient to contain solutions of some equations.
There is a new set called set of complex numbers, in which the square root of negative number exists.

1.1. Concepts of complex numbers

A complex number is a number that can be put in the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$ (i being the first letter of the word "imaginary").
The set of all complex numbers is denoted by \mathbb{C} and is defined as $\mathbb{C}=\left\{z=a+b i: a, b \in \mathbb{R}\right.$ and $\left.i^{2}=-1\right\}$
The real number a of the complex number $z=a+b i$ is called the real part of z and denoted by $\operatorname{Re}(z)$ or $\mathfrak{R}(z)$; the real number b is called the imaginary part of z and denoted by $\operatorname{Im}(z)$ or $\mathfrak{J}(z)$.

1.1. Concepts of complex numbers

- Example 1.1

Give two examples of complex numbers.

- Solution

There are several answers. For example $-3.5+2 i$ and $4-6 i$, where $i^{2}=-1$, are complex numbers.

- Example 1.2

Show the real part and imaginary part of the complex number $-3+4 i$.

- Solution
$\operatorname{Re}(-3+4 i)=-3$ and $\operatorname{Im}(-3+4 i)=4$

1.1. Concepts of complex numbers

Remarks

a) It is common to write a for $a+0 i$ and bi for $0+b i$. Moreover, when the imaginary part is negative, it is common to write $a-b i$ with $\mathrm{b}>0$ instead of $a+(-b) i$, for example $3-4 i$ instead of $3+(-4) i$.
b) A complex number whose real part is zero is said to be purely imaginary whereas a complex number whose imaginary part is zero is said to be a real number or simply real.
Therefore, all elements of \mathbb{R} are elements of \mathbb{C}; and we can simply write $\mathbb{R} \subset \mathbb{C}$.

1.2. Algebraic form of a complex number

Recall that the set of all complex numbers is denoted by \mathbb{C} and is defined as $\mathbb{C}=\left\{z=a+b i: a, b \in \mathbb{R}\right.$ and $\left.i^{2}=-1\right\}$. $z=a+b i$ is the algebraic (or standard or Cartesian or rectangular) form of the complex number z.

- 1.2.1. Definition and properties of " i "

For a complex number $z=a+b i, i$ is called an imaginary unit.

Properties of imaginary unit i

The powers of imaginary unit are: $i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$.
If we continue, we return to the same results; the imaginary unit, i, "cycles" through 4 different values each time we multiply as it is illustrated in figure 1.1.

1.2. Algebraic form of a complex number

- 1.2.1. Definition and properties of "i"

Figure 1.1. Rotation of imaginary unit i
Other exponents may be regarded as $4 k+m, k=0,1,2,3,4,5, \ldots$ and $m=0,1,2,3$.
Thus, the following relations may be used:
$i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i$

1.2. Algebraic form of a complex number

- Example 1.3

Find the value of i^{48}, i^{801}, i^{142} and i^{22775}

- Solution

$$
\begin{array}{ll}
i^{48}=i^{4 \times 12}=1, & i^{801}=i^{4 \times 200+1}=i \\
i^{142}=i^{4 \times 35+2}=-1, & i^{22775}=i^{4 \times 5693+3}=-i
\end{array}
$$

- 1.2.2. Geometric representation of complex numbers

A complex number can be visually represented as a pair of numbers (a, b) forming a vector from the origin or point on a diagram called Argand diagram (or Argand plane), named after Jean-Robert Argand, representing the complex plane. This plane is also called Gauss plane.
The x-axis is called the real axis and is denoted by Re while the y-axis is known as the imaginary axis; denoted Im as illustrated in fig.1.2.

1.2. Algebraic form of a complex number

Figure 1.2. Geometric representation of a complex number
The Argand diagram fig 1.2 represents complex number $z=a+b i$ both as a point $P(\mathrm{a}, \mathrm{b})$ and as a vector $\overrightarrow{O P}$.
$z=(a, b)$ is a geometric form of the complex number z.

Notice

In complex plane, we will no longer talk about coordinates but affixes. The affix $z=a+b i$ of a point is plotted as a point and position vector on an Argand diagram; $a+b i$ is the rectangular expression of the point.

1.2. Algebraic form of a complex number

- Example 1.4
$z_{1}=1+2 i, z_{2}=2-3 i, z_{3}=-3-2 i, z_{4}=3 i$ and $z_{5}=-4 i$.
- Solution:

1.2. Algebraic form of a complex number

- 1.2.3. Modulus of a complex number

The distance from origin to the point (x, y) corresponding to the complex number $z=x+y i$ is called the modulus (or magnitude or absolute value) of z and is denoted by $|z|$ or $|x+i y|$. Thus, modulus of z is given by $r=|z|=\sqrt{x^{2}+y^{2}}$.

Example 1.5

Find the modulus of $4-3 i$

Solution

$$
|4-3 i|=\sqrt{16+9}=5
$$

Example 1.7

Find the modulus of -3

Solution

$|-3|=\sqrt{(-3)^{2}+0^{2}}=3$

Example 1.6

Find the modulus of i

Solution

$$
|i|=\sqrt{0^{2}+1^{2}}=1
$$

Example 1.8

Find the modulus of
$\frac{1}{2}(1+i \sqrt{3})$

Solution

$$
\begin{aligned}
\left|\frac{1}{2}(1+i \sqrt{3})\right| & =\frac{1}{2}|1+i \sqrt{3}| \\
& =\frac{1}{2} \sqrt{1+3}=1
\end{aligned}
$$

1.2. Algebraic form of a complex number

Properties of modulus

Let z, w be complex numbers different from 0 , thus
a) $|z|^{2}=\left[\mathrm{R}_{e}(z)\right]^{2}+[\operatorname{I} m(z)]^{2}$
b) $|z|^{2}=z \bar{z}$
c) $\operatorname{Re}(z) \leq|\operatorname{Re}(z)| \leq|z|$
d) $\operatorname{Im}(z) \leq|\operatorname{Im}(z)| \leq|z|$
e) $|z w|=|z||w|$
f) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$
g) $|z+w| \leq|z|+|w|$
i) $|z-w| \geq|z|-|w|$

Example 1.9

Find the modulus of $\frac{5}{3-4 i}$
Solution

$$
\begin{aligned}
\left|\frac{5}{3-4 i}\right| & =\frac{|5|}{|3-4 i|} \\
& =\frac{5}{\sqrt{9+16}}=1
\end{aligned}
$$

Example 1.10

Find the modulus of $\frac{2+i}{1-3 i}$

Solution

$$
\begin{aligned}
\left|\frac{2+i}{1-3 i}\right| & =\frac{|2+i|}{|1-3 i|} \\
& =\frac{\sqrt{5}}{\sqrt{10}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

1.2. Algebraic form of a complex number

Interpretation of $\left|z_{B}-z_{A}\right|$
Consider the complex number $z_{A}=x_{1}+i y_{1}$, where $z_{A}=x_{1}+i y_{1}$ and $z_{B}=x_{2}+i y_{2}$. The points A and B represent z_{A} and z_{B} respectively.

Then, $z=\left(x_{2}-x_{1}\right)+i\left(y_{2}-y_{1}\right)$ and is represented by the point C. This makes $O A B C$ a parallelogram.
From this, it follows that $\left|z_{B}-z_{A}\right|=\overline{O C}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. That is to say, $\left|z_{B}-z_{A}\right|$ is the length $A B$ in the Argand diagram.

1.2. Algebraic form of a complex number

If the complex number z_{A} is represented by the point A, and the complex number z_{B} is represented by the point B, then $\left|z_{B}-z_{A}\right|=\overline{A B}$,

Example 1.11

Let A and B be the points with affixes $z_{A}=-1-i, z_{B}=2+2 i$. Find $\overline{A B}$.

Solution

$$
\overline{A B}=\left|z_{B}-z_{A}\right|=|3+3 i|=\sqrt{9+9}=3 \sqrt{2}
$$

1.2. Algebraic form of a complex number

- Loci related to the distances on Argand diagram

A locus is a path traced out by a point subjected to certain restrictions. Paths can be traced out by points representing variable complex numbers on an Argand diagram just as they can in other coordinate systems.
Consider the simplest case first, when the point P represents the complex number z such that $|z|=R$. This means that the distance of $O P$ from the origin O is constant and so P will trace out a circle.
$|z|=R$ represents a circle with centre at origin and radius R.
If instead $\left|z-z_{1}\right|=R$, where z_{1} is a fixed complex number represented by point A on Argand diagram, then
$\left|z-z_{1}\right|=R$ represents a circle with centre z_{1} and radius R.

1.2. Algebraic form of a complex number

 $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ represents a straight line which is the perpendicular bisector (mediator) of the line segment joining the points z_{1} and z_{2}.- Example 1.12

If $\left|\frac{z+2}{z}\right|=2$ and point P represents z in the Argand plane,
show that P lies on a circle and find the centre and radius of this circle.

- Solution

Let $z=x+i y$ where $x, y \in \mathbb{R}$
Then $\left|\frac{z+2}{z}\right|=2 \quad \Rightarrow|z+2|=2|z|$
$\Rightarrow|x+i y+2|=2|x+i y| \quad \Rightarrow|x+2+i y|=2|x+i y|$
$\Rightarrow \sqrt{(x+2)^{2}+y^{2}}=2 \sqrt{x^{2}+y^{2}}$
$\Rightarrow(x+2)^{2}+y^{2}=4 x^{2}+4 y^{2} \quad$ [squaring both sides]
$\Rightarrow x^{2}+4 x+4+y^{2}=4 x^{2}+4 y^{2} \Rightarrow-3 x^{2}-3 y^{2}+4 x=-4$

1.2. Algebraic form of a complex number

$\Rightarrow 3 x^{2}+3 y^{2}-4 x=4$ which is the equation of a circle with centre at $\left(\frac{2}{3}, 0\right)$ and with radius of length $\frac{4}{3}$.

- Example 1.13

Determine, in complex plane, the locus M of affix z such that $|z-2 i|=|z+2|$.

- Solution

Let $z=x+y i$, we have
$|x+y i-2 i|=|x+y i+2|$
$\Rightarrow|x+i(y-2)|=|x+2+y i|$
$\Rightarrow \sqrt{x^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+y^{2}}$
$\Rightarrow x^{2}+(y-2)^{2}=(x+2)^{2}+y^{2} \quad[$ squaring both sides]
$\Rightarrow x^{2}+y^{2}-4 y+4=x^{2}+4 x+4+y^{2}$
$\Rightarrow-4 y=4 x$
$\Rightarrow y=-x$

1.2. Algebraic form of a complex number

This is a straight line, mediator of the line segment joining the points $z_{1}=2 i$ and $z_{2}=-2$. See the following figure.

1.2. Algebraic form of a complex number

- 1.2.4. Operations on complex number

Equality of two complex numbers
If two complex numbers, say $a+b i$ and $c+d i$ are equal, then their real parts are equal and their imaginary parts equal. That is, $a+b i=c+d i \Leftrightarrow a=c$ and $b=d$.

Example 1.14

Given $z=a+b-4 i, w=2+b i$. Find the values of a and b if $z=w$.

Solution

$$
\begin{aligned}
& z=w \Leftrightarrow a+b=2,-4=b \\
& a-4=2 \Rightarrow a=6 \\
& \text { Thus, } a=6, b=-4
\end{aligned}
$$

1.2. Algebraic form of a complex number

- Addition and subtraction

Consider the vectors $\overline{O A}$ and $\overline{O B}$ where $A(a, b), B(c, d)$ with $a, b, c, d \in \mathbb{R}$.
In fig. 1.3, $\overline{O X}$ is sum of the vectors $\overline{O A}$ and $\overrightarrow{O B}$.

Figure 1.3. Addition of two complex numbers
Addition or subtraction of two complex numbers can be done geometrically by constructing a parallelogram (see Fig 1.3).

From activity 1.7, two complex numbers are added (or subtracted) by adding (or subtracting) separately the two real and the two imaginary parts. That is to say,

$$
\begin{aligned}
& (a+b i)+(c+d i)=(a+c)+(b+d) i \\
& (a+b i)-(c+d i)=(a-c)+(b-d) i
\end{aligned}
$$

1.2. Algebraic form of a complex number

Particular element:

Example 1.15

Evaluate $z_{1}+z_{2}$ if $z_{1}=3+4 i$ and $z_{2}=1+2 i$

Solution

$(3+4 i)+(1+2 i)=(3+1)+(4+2) i=4+6 i$

Example 1.16

Evaluate $z_{1}-z_{2}$ if $z_{1}=1-2 i$ and $z_{2}=9+3 i$

Solution

$$
(1-2 i)-(9+3 i)=(1-9)+(-2-3) i=-8-5 i
$$

1.2. Algebraic form of a complex number

- Conjugate and opposite

The complex conjugate of the complex number $z=x+y i$, denoted by \bar{z} or z^{*}, is obtained by changing the sign of the imaginary part. Hence, the complex conjugate of $z=x+y i$ is $\bar{z}=x-y i$.
The complex number $-z=-x-y i$ is the opposite of $z=x+y i$, symmetric of z with respect to 0 .

Geometrical presentation of conjugate and opposite (negative) of complex number

Figure 1.4. Geometrical presentation of conjugate and opposite of a complex number

1.2. Algebraic form of a complex number

- Conjugate and opposite

The complex conjugate of the complex number $z=x+y i$, denoted by \bar{z} or z^{*}, is obtained by changing the sign of the imaginary part. Hence, the complex conjugate of $z=x+y i$ is $\bar{z}=x-y i$.
The complex number $-z=-x-y i$ is the opposite of $z=x+y i$, symmetric of z with respect to 0 .
Geometrically, figure 1.4 shows that \bar{z} is the "reflection" of z about the real axis while $-z$ is symmetric to z with respect to 0 . In particular, conjugating twice gives the original complex number: $\overline{\bar{z}}=z$.

The real and imaginary parts of a complex number can be extracted using the conjugate:

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}) \quad \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

Moreover, a complex number is real if and only if it equals its conjugate.

1.2. Algebraic form of a complex number

- Example 1.17

Consider the complex number $z=1+2 i$. Show that

- Solution

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}) \text { and } \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

$$
z=1+2 i, \quad \bar{z}=1-2 i
$$

$$
\frac{1}{2}(z+\bar{z})=\frac{1}{2}(1+2 i+1-2 i)=\frac{1}{2}(2)=1=\operatorname{Re}(z)
$$

$$
\frac{1}{2 i}(z-\bar{z})=\frac{1}{2 i}(1+2 i-1+2 i)=\frac{1}{2 i}(4 i)=2=\operatorname{Im}(z)
$$

Notice

(1) Conjugation distributes over the standard arithmetic operations:
(i) $\overline{z+w}=\bar{z}+\bar{w}$
(ii) $\overline{z w}=\bar{z} \bar{w}$
(iii) $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}$
(iv) $\operatorname{Im}(z)=-\operatorname{Im}(\bar{z})$ and $\operatorname{Re}(z)=\operatorname{Re}(\bar{z})$
(1) The complex number $-z=-x-y i$ is the opposite of $z=x+y i$, symmetric of z with respect to 0 and
$z+|-z|=0$.

1.2. Algebraic form of a complex number

Example 1.18

Find the conjugate of $z=u+w$, if $u=6+2 i$ and $w=1-4 i$.

Solution

Conjugate of $z=(6+2 i)+(1-4 i)$ is

$$
\begin{aligned}
& \bar{z}=\overline{(6+2 i)+(1-4 i)}=\overline{7-2 i}=7+2 i \\
& \text { Or } \\
& \bar{z}=(\overline{6+2 i})+(\overline{1-4 i})=(6-2 i)+(1+4 i)=7+2 i
\end{aligned}
$$

Example 1.19

Find the conjugate of $z=u-w-t$, if $u=2-3 i, w=-1-i$ and $t=4+3 i$.

Solution

Conjugate of $z=(2-3 i)-(-1-i)-(4+3 i)$ is
$\bar{z}=\overline{(2-3 i)-(-1-i)-(4+3 i)}=\overline{-1-5 i}=-1+5 i$
Or
$\bar{z}=\overline{(2-3 i)}-\overline{(-1-i)}-\overline{(4+3 i)}=(2+3 i)-(-1+i)-(4-3 i)=-1+5 i$

1.2. Algebraic form of a complex number

- Multiplication
the multiplication of two complex
numbers $z_{1}=a+b i$ and $z_{2}=c+d i$ is defined by the following formula:

$$
\begin{aligned}
z_{1} \times z_{2} & =(a+b i)(c+d i) \\
& =(a c-b d)+(b c+a d) i
\end{aligned}
$$

Alternatively, if $z_{1}(a, b), z_{2}(c, d)$ are complex numbers in geometric form, thus, $z_{1} \cdot z_{2}=(a c-b d, b c+a d)$.
In particular, the square of the imaginary unit is -1 ; since $i^{2}=i \times i=-1$ or in geometric form $(0,1)(0,1)=(-1,0)$.

1.2. Algebraic form of a complex number

- Inverse and division

From activity 1.10, the inverse of $z=a+b i$ is given by

$$
\frac{1}{z}=z^{-1}=\frac{\bar{z}}{z \times \bar{z}} \text { where } \bar{z}=a-b i
$$

Remark

The product $z \bar{z}=a^{2}+b^{2}$ is called the norm of $z=a+b i$ and is denoted by $\|z\|^{2}$ or $|z|^{2}$.
Thus,
$\frac{1}{z}=\frac{\bar{z}}{\|z\|^{2}}$ where $\bar{z}=a-b i$
Hence,

$$
z^{-1}=\frac{\bar{z}}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

If $z_{1}=a+b i$ and $z_{2}=c+d i$, then
$\frac{z_{1}}{z_{2}}=\frac{z_{1} \bar{z}_{2}}{\left\|z_{2}\right\|^{2}}$

1.2. Algebraic form of a complex number

Or
$\frac{z_{1}}{z_{2}}=\frac{a+b i}{c+d i}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+i\left(\frac{b c-a d}{c^{2}+d^{2}}\right)$

Example 1.20

Find $\frac{1}{z}$ if $z=4+2 i$
Solution

$$
\frac{1}{z}=\frac{1}{4+2 i}=\frac{4-2 i}{4^{2}+2^{2}}=\frac{4}{20}-\frac{2}{20} i=\frac{1}{5}-\frac{1}{10} i
$$

Example 1.21

Evaluate $\frac{-1+i}{i+2}$
Solution

$$
\frac{-1+i}{i+2}=\frac{-1+i}{2+i}=\frac{(-1+i)(2-i)}{(2+i)(2-i)}=\frac{-2+1+2 i+i}{1+4}=\frac{-1+3 i}{5} .
$$

1.2. Algebraic form of a complex number

Example 1.22

Find the real numbers x and y such that $(x+i y)(3-2 i)=6-17 i$.

Solution

$$
\begin{aligned}
& (x+i y)(3-2 i)=6-17 i \\
& \Rightarrow x+i y=\frac{6-17 i}{3-2 i}=\frac{(6-17 i)(3+2 i)}{(3-2 i)(3+2 i)}=\frac{52-39 i}{13}=4-3 i
\end{aligned}
$$

Thus, $x=4$ and $y=-3$

Alternative method

$$
\begin{aligned}
& (x+i y)(3-2 i)=6-17 i \\
& 3 x-2 i x+3 i y+2 y=6-17 i \Leftrightarrow 3 x+2 y+(-2 x+3 y) i=6-17 i \\
& \Leftrightarrow\left\{\begin{array}{l}
3 x+2 y=6 \\
-2 x+3 y=-17
\end{array}\right.
\end{aligned}
$$

Solving this system, we get;

$$
x=4 \text { and } y=-3
$$

1.2. Algebraic form of a complex number

Remarks

1. Three distinct points A, B and C with affixes z_{1}, z_{2} and z_{3} respectively are collinear if and only if $\frac{z_{C}-z_{A}}{z_{B}-z_{A}} \in I R$
2. The non-zero vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are perpendicular if and only if $\frac{z_{C}-z_{A}}{z_{B}-z_{A}}$ is pure imaginary different from
zero.

Example 1.23

Let A, B and C be the points with affixes $z_{A}=-1-i, z_{B}=2+2 i$ and $z_{C}=3+3 i$ respectively. Show that they are collinear points.

Solution

$$
\begin{aligned}
& \frac{z_{C}-z_{A}}{z_{B}-z_{A}}=\frac{(3+3 i)-(-1-i)}{(2+2 i)-(-1-i)} \\
& \frac{4+4 i}{3+3 i}=\frac{4(1+i)}{3(1+i)}=\frac{4}{3} \in I R
\end{aligned}
$$

Thus, z_{A}, z_{B} and z_{C} are collinear.

1.2. Algebraic form of a complex number

Example 1.24

Let A, B and C be the points with affixes
$z_{A}=2+i, z_{B}=3+2 i$ and $z_{C}=1+2 i$ respectively.
Show that $\overline{A B}$ and $\overline{A C}$ are perpendicular.

Solution

$$
\begin{aligned}
& z_{C}-z_{A}=\overrightarrow{A C}=-1+i \quad z_{B}-z_{A}=\overrightarrow{A B}=1+i \\
& \frac{z_{C}-z_{A}}{z_{B}-z_{A}}=\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{\sqrt{2}}=i \sqrt{2}
\end{aligned}
$$

This is pure imaginary different from zero. Thus, the vectors $\overrightarrow{A B}$ and $\overline{A C}$ are perpendicular.

Thank you for watching. Please subscribe below.

Hatern

