MATHEMATICS II

Date: 20/06/2024 Period: 08.30 - 11.30

END OF TERM III EXAMINATIONS QUESTION PAPER

SENIOR FIVE

COMBINATIONS: MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)

- -- MATHEMATICS -COMPUTER SCIENCE-ECONOMICS (MCE)
 - MATHEMATICS-ECONOMICS-GEOGRAPHY (MEG)
- MATHEMATICS -PHYSICS-COMPUTER
 SCIENCE (MPC)
- MATHEMATICS-PHYSICS-GEOGRAPHY (MPG)
- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION:

GRADE:

3 HOURS

MARKS:	100	CAMIS	/70]		
	INSTRUCT	IONS		-		
1) This paper contains	two sections:					
Section A: Attempt all q	uestions.			(55 marks)		
Section B: Attempt thre	e questions only.			(45 marks)		
2) You may use mathematical instruments and a calculator where necessary .						
B) Use a blue or black ink pen only to write your answers and a pencil to draw						
diagrams.						
4) Show clearly all the worl without all working steps	 Hagrans. 4) Show clearly all the working steps. Marks will not be awarded for the answer without all working steps. 					

Section A: Attempt all questions (55 marks)

1. Show that $\cos 3A = 4\cos^3 A - 3\cos A$	4 marks)
2. If $\sin A = \frac{3}{5}$, $0 < A < \frac{\pi}{2}$ and $\sin B = \frac{4}{5}$, $\frac{\pi}{2} < B$	
$<\pi$ Evaluate $\cos(A+B)$ without the use of a (4 calculator.	4 marks)
3. Solve the trigonometric equation $2\sin\frac{x}{2} - \cos x + 1 = 1$	5 marks)
 4. Show that U_n={3(-2)ⁿ} is a geometric sequence and write down the terms of this sequence. 	e first 4 3 marks)
5. The population of a country grow according to the law $p = Ae^{0.06t}$, is million in the population at time t and A is a constant given that population is 27.3 millions	where p t=0 the
Calculate the population when :	
i. t=10 (2 ii. t=15 (2	2 marks) 2 marks)
6. Fill in blanks $y = sin^{-1}x$ means that $x = \dots$ where $-1 \le x \le 1$ and $-$	$\frac{\pi}{2} \le y \le \frac{\pi}{2}$
()	2 marks)
7. Calculate $\lim_{x\to 0} \frac{\sin 8x}{\sin 5x}$ (3)	3 marks)
8. Study the parity of the function $f(x) = \frac{x + \sin 3x}{x^2}$	4 marks)
9. Answer by True or False. Two vectors are parallel if:	
a) They have the opposite directions	(1 mark)
b) They have the same magnitude	(1 mark)
c) They lie in the same plane	(1 mark)
10. a) Show that $B = \{\vec{u}, \vec{v}, \vec{w}\}$ where $\vec{u} = (1, -1, 2), \vec{v} = (1, 1, 1), \vec{w} = (-1, 0)$	0,1) is a
basis of $\mathbb R$. (2)	2 marks)
b) Find the components of the vector $\vec{t} = (0, -3, 4)$ in the bas	is B

(2 marks)

- 11. Without calculating explain why $\Delta = \begin{vmatrix} 1 & 5 & -2 \\ 2 & 10 & -4 \\ 3 & 1 & 5 \end{vmatrix} = 0$ (2 marks)
- 12. Given A and B matrices representation of linear transformation f and g respectively such that

$$A = \begin{pmatrix} 3 & 4 & 1 \\ -1 & 2 & 0 \\ 4 & -5 & -3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 3 \\ 1 & 0 & 2 \end{pmatrix}.$$

Find the matrix representation of *gof* . (3 marks)

13.Find the centre and the radius of the Sphere

$$S \equiv x^2 + y^2 + z^2 + 4x - 8y + 6z - 7 = 0$$

14. Find the Cartesian equation of the plane α through the points a(3,2,-1); b(4,4,0) and perpendicular to the plane $\beta \equiv 2x + 4y - 4z = 3$

(5 marks)

(4 marks)

15. Find the vector position of the point of intersection of the lines

$$L_{1} \equiv \begin{cases} X = 3 + 3t \\ y = 3 + 2t \\ z = t \end{cases} \text{ and } L_{2} \equiv \begin{cases} X = 4 + s \\ y = 3 + s \\ z = -1 + s \end{cases}$$
(5 marks)

Section B: Attempt any three questions only (45 marks).

16. The first 3 terms of an arithmetic series are k-2, 2k+5 and 4k+1.

a)	Show that k=11	(3 marks)
b)	Find the 41 th term of the series	(7 marks)
c)	Show that S_n is always a square number	(5 marks)

17. Using the iterative formula, show that the 4th root of the number N is $x_{n+1} = \frac{3}{4}x_n + \frac{N}{4x_n^3}$. Hence show that (45.7)¹/₄ \approx 2.600 (correct to 3dps) (15 marks)

18. If
$$A = \begin{pmatrix} \cos A & -\sin A & 0 \\ \sin A & \cos A & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 verify that $A \cdot (Adj) = \det(A) \cdot I$ (15 marks)

19. Let consider the following table

x,	-5	-1	3	10	13
\mathcal{Y}_{i}	33	25	17	3	-3

i) Calculate the coefficient of correlation and comment on it. (8 marks)

- ii) Find the equation of regression line y on x. (5 marks)
- Iii) Estimate the value of x when y = 16. (2 marks)

(5 marks)

20. a) If A and B are dependent events such that $p(A) = \frac{5}{8}$ and $p(B/A) = \frac{3}{7}$

Find
$$p(A \cap B)$$

b) 3 girls A, B, and C pack biscuit in a factory from the batch allocated to them A packs 55%, B packs 30% and C packs 15%. The probability that A break some biscuits in packet is 0.7 and the respective probability of B is 0.2 and C is 0.1. What is the probability that a packet with broken biscuits found by checker was packed by A. (10 marks)

END!!!!!

MATHEMATICS II

Date: 20/06/2024 Period: 08.30 - 11.30

END OF TERM III EXAMINATIONS MARKING GUIDE

GRADE: COMBINATIONS:

SENIOR FIVE

- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)
 - MATHEMATICS -COMPUTER SCIENCE-ECONOMICS (MCE)
 - MATHEMATICS-ECONOMICS-
 - GEOGRAPHY (MEG)
 MATHEMATICS -PHYSICS-COMPUTER
 SCIENCE (MPC)
 - MATHEMATICS-PHYSICS-GEOGRAPHY (MPG)
 - PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 3 H

3 HOURS

MARKS: 100 CAMIS/7				
	INSTRUCTION	S		
1) This paper contains	two sections:			
Section A: Attempt all of	questions.		(55	
marks)				
Section B: Attempt three	(45			
marks)				
2) You may use mathemat	ical instruments an	d a calculator wh	lere	
necessary.				
3) Use a blue or black inl	x pen only to write y	your answers and	l a pencil to	
draw diagrams.				
4) Show clearly all the wor	king steps. Marks v	vill not be award	led for the	
answer without all worki	ng steps.			

SECTION A: ATTEMPT ALL QUESTIONS (55 MARKS)

 $1. \quad \cos 3A = 4\cos^3 A - 3\cos A$

We know that:

$\cos 3A = \cos(2A + A)$	0.5
= cos2AcosA-sin2AsinA	1
$= (\cos^2 A \cdot \sin^2 A) \cos A \cdot 2 \sin^2 A \cos A$.0.5
$= (\cos^2 A - (1 - \cos^2 A))\cos A - 2(1 - \cos^2 A)\cos A$.0.5
$= (\cos^2 A - 1 + \cos^2 A)\cos A - 2(1 - \cos^2 A)\cos A$.0.5
$= \cos^{3}A \cdot \cos^{3}A \cdot 2\cos^{3}A \cdot 2\cos^{3}A$.0.5
= $4\cos^{3}A-3\cos A$ as required	.0.5

2.
$$\sin A = \frac{3}{5} \quad 0 < A < \frac{\pi}{2}$$
$$\sin B = \frac{4}{5} \quad \frac{\pi}{2} < B < \pi$$
$$\cos(A+B) = \cos A \cos B - \sin A \sin B \quad \dots \quad 1$$
$$\cos A = \pm \sqrt{1 - \sin^2 A} = \pm \sqrt{1 - \frac{9}{25}} = \frac{4}{5}, \quad 0 < A < \frac{\pi}{2} \quad \dots \quad 1$$
$$\cos B = \pm \sqrt{1 - \sin^2 B} = \pm \sqrt{1 - \frac{16}{25}} = -\frac{3}{5}, \quad \frac{\pi}{2} < B < \pi \quad \dots \quad 1$$
Thus
$$\cos A \cos B - \sin A \sin B = \frac{4}{5} \left(-\frac{3}{5}\right) - \frac{3}{5} \left(\frac{4}{5}\right) \quad \dots \quad 0.5$$
$$= -\frac{24}{25} \quad \dots \quad 0.5$$

3. $2\sin^2\frac{x}{2} - \cos x + 1 = 1$

$$2\sin^{2} \frac{x}{2} + (1 - \cos x) = 1 \dots 0.5$$

$$2\sin^{2} \frac{x}{2} + 2\sin^{2} \frac{x}{2} = 1 \dots 0.5$$

$$4\sin^{2} \frac{x}{2} = 1 \dots 0.5$$

$$\sin^{2} \frac{x}{2} = \frac{1}{4}$$

$$\Rightarrow \sin \frac{x}{2} = \pm \frac{1}{2} \dots 0.5$$
For $\sin \frac{x}{2} = \pm \frac{1}{2} \dots 0.5$
For $\sin \frac{x}{2} = \frac{1}{2}$

$$\frac{x}{2} = \begin{cases} \frac{\pi}{6} + 2k\pi \\ \frac{5\pi}{6} + 2k\pi \end{cases} \quad 0.5 \Rightarrow x = \begin{cases} \frac{\pi}{3} + 4k\pi \\ \frac{5\pi}{3} + 4k\pi \end{cases}, k \in \mathbb{Z}$$
For $\sin \frac{x}{2} = \frac{1}{2}$

$$\frac{x}{2} = \begin{cases} \frac{4\pi}{3} + 2k\pi \\ \frac{5\pi}{3} + 2k\pi \end{cases} \quad 0.5 \Rightarrow x = \begin{cases} \frac{8\pi}{3} + 4k\pi \\ \frac{10\pi}{3} + 4k\pi \end{cases}, k \in \mathbb{Z}$$

$$\mathbb{S} = \{ \frac{\pi}{3} + 4k\pi, -\frac{5\pi}{3} + 4k\pi, -\frac{8\pi}{3} + 4k\pi, -\frac{10\pi}{3} + 4k\pi \}$$
1
4. $u_{n} = \{3(-2)^{n+1} \dots 1$

$$\frac{u_{n+1}}{u_{n}} = \frac{3(-2)^{n+1}}{3(-2)^{n}} \dots 1$$

5. i. $p = Ae^{0.06t}$	0.5
$p(t=0) = Ae^{0.06 \times 0} = 27.3$	0.5
$\Rightarrow A = 27.3$ Then $p = 27.3e^{0.06t}$	
for t=10, $p = 27.3e^{0.06 \times 10} = 49.7$ millions	
ii. for t=15, $p = 27.3e^{0.06 \times 15} = 67.1$ millions	2

- c) False1
- 10. a) Since dim $\mathbb{R}^3 = 3$, to show that 3 vectors form a basis it is sufficient to

show that the 3 vectors are linearly independent $\dots 0.5$

Therefore $\vec{u}, \vec{v}, \vec{w}$ are linearly (0, -3, 4) = x(1, -1, 2) + y(1, 1, 1) + z(-1, 0, 1)

independent , hence they form a basis of \mathbb{R}^3 1

b) $R_2 = 2R_1 \text{Let } \vec{t} = x\vec{u} + y\vec{v} + z\vec{w} \Leftrightarrow (0, -3, 4) = x(1, -1, 2) + y(1, 1, 1) + z(-1, 0, 1)$ $\begin{cases} x + y - z = 0 \\ -x + y = -3 \\ 2x + y + z = 4 \end{cases} \Leftrightarrow x = 2, y = -1, z = 1$

13.
$$S \equiv x^2 + y^2 + z^2 + 4x - 8y + 6z - 7 = 0$$

$\equiv x^2 + 4x + y^2 - 8y + z^2 + 6z - 7 = 0$.1
$\equiv (x+2)^2 + (y-4)^2 + (z+3)^2 - 4 - 16 - 9 - 7 = 0$. 1
$\equiv (x+2)^2 + (y-4)^2 + (z+3)^2 = 36$	1
Hence this is a circle with center $C(-2, 4, -3)$ and Radius $R = 6$. 1

- 14. Given that a(3,2,-1), b(4,4,0), $B \equiv 2x + 4y 4z = 3$
- $\vec{ab} = (1, 2, 1)$ $\alpha = (a, \overrightarrow{ab}, \mathbf{B}^{\perp}).$ $\alpha = -12x + 36 + 6y - 12 + 0z = 0 \qquad \dots \qquad 0.5$ $3+3t = 4 + \lambda$ $3t - \lambda = 1$ $t = -1 + \lambda$ $t - \lambda = -1$ $\begin{cases} 3t - \lambda = 1 \\ 2t - \lambda = 0 \end{cases} \begin{vmatrix} 1 \\ -1 \end{vmatrix} \Rightarrow \begin{cases} t = 1 \\ \lambda = 2 \end{cases}$ $L_1 \cap L_2 = \{(6,5,1)\}$ Vector position $\vec{V} = 6\vec{i} + 5\vec{j} + \vec{k}$

SECTION B: ATTEMPT ANY THREE QUESTIONS ONLY (45 MARKS)

16. Given that k - 2, 2k + 5 and 4k + 1 are terms of an a.s

a)	$2k+5 = \frac{k-2+4}{2}$	<u>+k+1</u>	 	 1
\Leftrightarrow	4k+10 = 5k-1.		 	 1
\Leftrightarrow	5k - 4k = 11		 	 0.5
Her	nce k=11 as requi	ired	 	 0.5
b)	$\mathbf{u}_n = u_1 + (n-1)d$		 	 1
<i>u</i> ₁ =	=11-2=9		 	 1
<i>u</i> ₂ =	=2(11)+5=27		 	 1
<i>u</i> ₃ =	=4(11)+1=45.		 	 1
The	e common differe	ence d=18	 	 1
<i>u</i> ₄₁	$=u_1+40d$		 	 1
= 9	9+40(18)=729		 	 1

$=9n+\frac{n(n-1)}{2}18$	0.5
$=9n+9n^2-9n$	0.5
$=9n^2$	0.5
$=(3n)^2$ which is always square.	1

17. Using Newton Raphson method:

$$\begin{aligned} \det X &= \sqrt[4]{N} & \dots & 1 \\ \Rightarrow X^4 &= N & \dots & 0.5 \\ X^4 &- N &= 0 & \dots & 1 \\ \Rightarrow f(X) &= X^4 &- N & \dots & 1 \\ X_{n+1} &= X_n - \frac{f(X_n)}{f'(X_n)} & \text{for } n \in \mathbb{N} & \dots & 1 \\ f'(X) &= 4X^3 & \dots & 1 \\ X_{n+1} &= X_n - \left(\frac{X_n^4 - N}{4X_n^3}\right) & \dots & 1 \\ &= \frac{4X_n^4 - X_n^4 + N}{4X_n^3} & \dots & 1 \\ &= \frac{3X_n^4 + N}{4X_n^3} & \dots & 1 \\ &= \frac{3}{4}X_n + \frac{N}{4X_n^3} & \dots & 1 \\ &\text{for } X = \sqrt[4]{45.7}, & f(x) = X^4 - 45.7 & \dots & 1 \\ f(2) &= 16 - 45.7 < 0 \text{ and } f(3) = 81 - 45.7 > 0 \text{ hence } x \in [2,3] \end{aligned}$$

$$=\frac{3}{4}(2.5) + \frac{45.7}{4(2.5)^3} = 2.6062\cdots$$

$$X_{1} = \frac{3}{4}X_{1} + \frac{N}{4X_{1}^{3}} \qquad0.5$$

$$=\frac{3}{4}(2.6062) + \frac{45.7}{4(2.6062)^3} = 2.60006\cdots$$

$$X_2 \cong 2.600061$$
0.5

Now let compute the 9 cofactors

$$A_{11} = \begin{vmatrix} \cos A & 0 \\ 0 & 1 \end{vmatrix} = \cos A \qquad \qquad 1$$

$$A_{22} = \begin{vmatrix} \cos A & 0 \\ 0 & 1 \end{vmatrix} = \cos A \qquad \qquad 1$$

$$A_{21} = \begin{vmatrix} -\sin A & 0 \\ \cos A & 1 \end{vmatrix} = -\sin A \qquad \qquad 1$$

$$A_{12} = \begin{vmatrix} -\sin A & 0 \\ 0 & 1 \end{vmatrix} = -\sin A \qquad \qquad 1$$

$$A_{31} = \begin{vmatrix} -\sin A & 0 \\ \cos A & 0 \end{vmatrix} = 0 \qquad \qquad 1$$

$$\begin{aligned} A_{32} &= -\begin{vmatrix} \cos A & 0 \\ \sin A & 0 \end{vmatrix} = 0 & \dots & 1 \\ A_{13} &= \begin{vmatrix} \sin A & \cos A \\ 0 & 0 \end{vmatrix} = 0 & \dots & 1 \\ A_{23} &= -\begin{vmatrix} \cos A & -\sin A \\ 0 & 0 \end{vmatrix} = 0 & \dots & 1 \\ A_{33} &= \begin{vmatrix} \cos A & -\sin A \\ \sin A & \cos A \end{vmatrix} = \cos^2 A + \sin^2 A = 1 \text{ bb} \dots & 1 \\ A_{33} &= \begin{vmatrix} \cos A & -\sin A \\ \sin A & \cos A \end{vmatrix} = \cos^2 A + \sin^2 A = 1 \text{ bb} \dots & 1 \\ A_{43} &= \begin{pmatrix} \cos A & -\sin A \\ 0 & 0 & 1 \end{pmatrix} & \dots & 1 \\ A_{43} &= \begin{pmatrix} \cos A & -\sin A & 0 \\ -\sin A & \cos A & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos A & \sin A & 0 \\ -\sin A & \cos A & 0 \\ 0 & 0 & 1 \end{pmatrix} & \dots & 0 \\ A_{53} &= \begin{pmatrix} \cos^2 A + \sin^2 A & 0 & 0 \\ 0 & \cos^2 A + \sin^2 A & 0 \\ 0 & 0 & \cos^2 A + \sin^2 A \end{pmatrix} & \dots & 0.5 \\ also det(A)I &= 1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \dots & \dots & 1 \end{aligned}$$

19. i)

<i>x</i> _i	\mathcal{Y}_i	$x_i y_i$	x_i^2	\mathcal{Y}_i^2
-5	33	-165	25	1089
-1	25	-25	1	625
3	17	51	9	289
10	3	30	100	9
13	-3	-39	169	9
$\sum x_i =$	$\sum y_i =$	$\sum x_i y_i =$	$\sum x_i^2 =$	$\sum y_i^2 =$
20	75	-148	304	2021

.....0.5 marks for each row = 3 marks (considering last six rows)

$$\overline{x} = \frac{\sum x_i}{n} = \frac{20}{5} = 4, \ \overline{y} = \frac{\sum y_i}{n} = \frac{75}{5} = 15$$

$$r = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_2^2)}}$$

$$= \frac{5(-148) - 20(75)}{\sqrt{5(304) - (20)^2} \sqrt{5(2041) - (75)^2}}$$

$$1$$

$$\overline{x} = \frac{-740 - 1500}{\sqrt{1120} \sqrt{4480}}$$

$$1$$

$$= \frac{-2240}{2240}$$

$$0.5$$

= -1	().	5
= -1	().	•

Hence r = -1, there is a negative perfect correlation. The points are on straight line.

iii) When y = 16

16	$-2x + 23 \Longrightarrow 2x = 23 - 16$	1
$x = \frac{7}{-} =$	5	1
2		

	1 mark for each line = 6 marks
$p(broken) = p(A \cap broken) + p(B \cap broken) + p(C \cap broken)$	oken)1
$= 0.55 \times 0.7 + 0.30 \times 0.2 + 0.15 \times 0.1$	0.5
= 0.385+0.06+0.015=0.46	0.5
$p(A / broken) = \frac{p(A \cap broken)}{p(broken)}$	1
$=\frac{0.385}{1}$	0.5
0.46	
p(A / broken) = 0.836	0.5